
Polar magneto-optical Kerr effect for low-symmetric ferromagnets

Helmut Rathgen,1,2,* Mikhail I. Katsnelson,2,3 Olle Eriksson,2 and Gertrud Zwicknagl1
1Institut für Mathematische Physik, Technische Universität Braunschweig, Mendelssohnstraße 3, D-38106 Braunschweig, Germany

2Condensed Matter Theory, Department of Physics, Uppsala University, Box 530, S-75121 Uppsala, Sweden
3Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, The Netherlands

�Received 2 November 2004; revised manuscript received 6 April 2005; published 20 July 2005�

The polar magneto-optical Kerr effect �MOKE� for low-symmetric ferromagnetic crystals is investigated
theoretically based on first-principles calculations of optical conductivities and a transfer matrix approach
for the electrodynamics part of the problem. Exact average magneto-optical properties of polycrystals
are described, taking into account realistic models for the distribution of domain orientations. It is shown
that for low-symmetric ferromagnetic single crystals the MOKE is determined by an interplay of crystallo-

graphic birefringence and magnetic effects. Calculations for a single crystal and bicrystal of hcp �112̄0�
Co and for a polycrystal of CrO2 are performed, with results being in good agreement with experimental
data.
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I. INTRODUCTION

The magneto-optical Kerr effect �MOKE� is a versatile
method to probe the magnetic properties of thin films. Ad-
vanced by the rapid developments in crystallographic growth
techniques, a variety of low-symmetric crystalline surfaces
have been subject to MOKE measurements in the last de-
cades. This has led to systematic investigations of magneto-
optical anisotropy effects.1

State-of-the-art theoretical approaches to investigate the
MOKE are based on first-principles calculations of dielectric
tensors in the framework of the Kubo-Greenwood
formalism2,3 as suggested by Wang and Callaway.4 The
MOKE is obtained from a dielectric tensor by means of an
approximative analytic expression

� + i� =
�xy

�1 − �xx���xx

�1�

derived originally by Argyres in 1955.5 � denotes the Kerr
rotation and � denotes the Kerr ellipticity.

This approach requires in general that the dielectric tensor
has symmetry

� = � �xx �xy 0

− �xy �xx 0

0 0 �zz
� . �2�

There have been theoretical attempts to extend the approach
to low-symmetric systems. However, so far a complete elec-
trodynamics calculation for low-symmetric dielectric tensors
has not been considered.

There are many interesting ferromagnets that have a low

symmetry: e.g., CrO2, hcp �112̄0� Co, and FePt grown in the
�010� direction. All of these systems have two different crys-
tallographic axes in the surface plane, so beside their
magneto-optical activity they exhibit crystallographic bire-
fringence.

In this paper we show that for such crystals it is important
to consider the complete optical response including birefrin-

gence and magnetic effects in order to describe correctly
the polar MOKE. Further, we show that the optical response
is qualitatively different for single crystals and polycrystals
and, finally, for polycrystals it sensitively depends on
the ordering of crystallographic domains. We calculate

the MOKE of hcp �112̄0� Co and of �010� CrO2. For Co
we show that the previous interpretation of experimental
data of anisotropic polar MOKE �Ref. 1� in terms of a
manifestation of magnetocrystalline anisotropy remains
valid.

The paper is organized as follows. In the subsequent sec-
tion we describe our approach to the complete calculation of
the electrodynamics problem by means of transfer matrix
methods. A theoretical description of ellipsometry measure-
ments for single crystals and polycrystals is given in Sec. III.
In Sec. IV we discuss first-principles calculations of optical
conductivities. The space-time symmetry of Co and CrO2
crystals is described in Sec. V. The calculated optical re-
sponse of Co and CrO2 is presented in Secs. VI and VII,
respectively. In Sec. VIII a summary and conclusions are
given.

II. TRANSFER MATRIX METHODS

The optical response of a finite system of layers to an
incident plane wave can be described by transfer matrix
methods.6–8 The description is valid if the magnetic perme-
ability is unity and the wavelength of the light is large com-
pared to the microscopic structure of materials and also large
compared to interface roughness. In the most general case a
system with n boundaries is described by a regular set of 4n
linear equations that determines the complex amplitude vec-
tors of all plane waves in all media. We briefly describe the
method.

We first choose a coordinate system such that the z axis is
the surface normal and the scattering plane is spanned by the
z and y axes. In the half space of the incident and reflected
wave Fresnel’s secular equation reads
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− k2E +
�2

c2 �E = 0 . �3�

We substitute r� �� /c�r and define qª �c /��ky and
kª �c /��kz. This gives

q = �� sin � ,

k = ± �� cos � ¬ ± k0, �4�

where � is the incident angle. This gives an ansatz for the
wave,

E = Einei�qy−k0z−�t� + Ereflei�qy+k0z−�t�, �5�

where Ein is the known amplitude vector of the incident
wave and the complex amplitude vector of the reflected wave
satisfies

Ez
refl = −

q

k0
Ey

refl, �6�

leaving two free parameters Ex
refl and Ey

refl. For other media
the most general plane-wave solution to Maxwell’s equations
is a combination of four independent waves. In the case of a
scalar medium it is

E = E1ei�qy+k1z−�t� + E2ei�qy+k2z−�t�, �7�

where

k1,2 = ± �� − q2 �8�

and the x and y components of E1 and E2 are independent. In
the case of a tensor medium it is

E = a1n1ei�qy+k1z−�t� + ¯ + a4n4ei�qy+k4z−�t�, �9�

with four free parameters a1 , . . . ,a4 satisfying

Ei = aini. �10�

k1 , . . . ,k4 are the roots of the fourth-order polynomial in k,

Det��xx − q2 − k2 �xy �xz

�yx �yy − k2 �yz + qk

�zx �zy + qk �zz − q2 � = 0, �11�

and the vectors n1 , . . . ,n4 are associated kernels.
In the half space on the backside of the layers two

waves can always be discarded. For a transparent
medium these are two backward-traveling waves; for an ab-
sorbing medium these are two exponentially decaying
waves.

In our case �a bulk metallic system with no intermediate
layer� we have only an absorbing tensor half space and
the ansatz for the waves in the responding system reduces
to

E = a1n1ei�qy+k1z−�t� + a2n2ei�qy+k2z−�t�, �12�

where k1 and k2 are the roots that have negative imaginary
parts �negative z direction corresponds to forward-traveling
waves�.

Stressing the assumption of unity magnetic permeability,
four independent boundary conditions follow from Max-
well’s equations stating that

Ex,Ey,�zEx and iqEz − �zEy �13�

are continuous.
Substituting the ansatz, Eqs. �5� and �12�, in the boundary

conditions, we get

�
− 1 0 nx

1 nx
2

0 − 1 ny
1 ny

2

− k0 0 k1nx
1 k2nx

2

0
q2

k0
+ k0 qnz

1 − k1ny
1 qnz

2 − k2ny
2��Ex

refl

Ey
refl

a1

a2
�

=�
Ex

in

Ey
in

− k0Ex
in

qEz
in + k0Ey

in
� . �14�

This is a regular system of four linear equations. Stressing
Eqs. �6� and �10� its solution determines the complex ampli-
tudes vectors of all waves.

We have written a numerical implementation of the most
general case of a transfer matrix approach 	based on standard
LAPACK �Ref. 9� routines and polynomial solver10
. It is de-
scribed in detail in Ref. 11.

III. ELLIPSOMETRY FOR SINGLE CRYSTALS AND
POLYCRYSTALS

The state of polarization of a plane wave is conveniently
described by Stokes parameters6

S =�
S0

S1

S2

S3

� =�
ExĒx + ĒyEy

ExĒx − ĒyEy

ExĒy + ĒxEy

i�ExĒy − ĒxEy�
� , �15�

where E= �Ex ,Ey� is the complex amplitude vector of the
plane wave in the coordinate system of the polarization state
analysis.

The state of polarization of a set of incoherent plane
waves that add by their intensities is described by the sum
of their Stokes parameters. Both for a single wave and for
an incoherent wave, the rotation angle of the polarization
ellipse � and its ellipticity � are related to the Stokes
parameters by

tan 2� =
S2

S1
�16�

and

sin 2� =
S3

�S1
2 + S2

2 + S3
2

. �17�

In the general case the polarization ellipse is the intensity
behind an analyzer for all positions. Only in the special case
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of a single wave is this equivalent to the curve that is drawn
by the tip of the electric field vector.

The optical response of a polycrystal can be described
by the sum over Stokes parameters of single-crystalline
domains weighted by surface areas of the domains and
intensities shining on them.12 The sum extends over all
domains that are illuminated in the experiment. The ap-
proach is valid if single-crystalline domains are large
compared to the wavelength. We can calculate Stokes
parameters for polycrystals by summing over Stokes param-
eters obtained from transfer matrix calculations for single
crystals.

IV. FIRST-PRINCIPLES CALCULATIONS OF OPTICAL
CONDUCTIVITIES

We briefly describe the calculation of optical constants by
means of first-principles calculations. Our approach is basi-
cally standard unless we evaluate the Kubo-Greenwood for-
mula directly without a Kramers-Kronig transformation and
analytical continuation �see also Ref. 13�.

In this section we consider the optical conductivity tensor
� rather than the corresponding dielectric tensor �. The
quantities are related by the identity

������ = 	�� + i
4


�
������ . �18�

In general, intraband, as well as direct and indirect
interband, transitions contribute to the optical conductivity.
Spins may flip �for magnetic dipole transitions� or stay
constant �for electric dipole transitions� during excitations.
It is a common practice to account only for the contribution
of electric dipole �non-spin-flip� direct interband transitions
by means of ab initio methods while treating the contribution
of intraband transitions by a phenomenological Drude
term

�D��� =
�0

1 + �2�2 �19�

and neglecting all other contributions.4,14–16 A broad
variety of linear optical and magneto-optical effects in
metals as well as in semiconductors have been successfully
described in the framework of this approximation; see,
e.g., Refs. 17 and 18 and references therein. In the transition
metals, intraband transitions turn out to be important
in the range from 0 eV up to 0.5 eV.19 It is shown in
Ref. 4 that a corresponding Drude contribution is negligible
for energies larger than 1 eV in the case of Ni. Throughout
this work we neglect any phenomenological Drude
contribution.

The Kubo-Greenwood expression for the contribution
of direct interband transitions to the optical conductivity
reads14

������ =
ie2

m2�
�

BZ

d3k �
l,n

El�k�EF

En�k��EF

1

�nl�k� �ln
� �k��nl

� �k�

� − �nl�k� +
i

����

+
„�ln

� �k��nl
� �k�…*

� + �nl�k� +
i

����
� , �20�

where the indices l and n denote the spin and all band quan-
tum numbers for the occupied and empty states, respectively,
k is the quasimomentum running through the Brillouin zone,
and EF is the Fermi energy. The symbol �nl

� �k�, �=x ,y ,z,
denotes the matrix elements of the momentum operator
given below by Eq. �22�, and �nl�k� is the energy difference
between the involved states,

�nl�k� =
1

�
	En�k� − El�k�
 . �21�

Finally, ���� is a phenomenological relaxation time.
Throughout this work we use a constant relaxation time of
0.136 eV. The results of this paper are insensitive to the
actual choice of this value.

Together with the energy differences �nl�k�, the matrix
elements of the momentum operator are obtained from the
underlying band structure calculation by evaluating the ex-
pression

�ln�k� =� d3r�l
*�k,r��p +

�

4mc2 	� � � V�r�
��n�k,r� .

�22�

Here �n�k ,r� is the Bloch wave function with quantum num-
bers as described above, p=−i��, and V�r� is a crystal po-
tential. State-of-the-art works on ab initio–calculated optical
constants neglect the spin-orbit term in the expression for the
matrix elements of the momentum operator, Eq. �22�. This
has been found to be a good approximation; see, e.g., Ref. 4.
We follow this approach.

Expression �20� may be computed directly or via symme-
trized limit expressions requiring Kramers-Kronig transfor-
mations and analytical continuation to finite relaxation times.
We recently discussed the advantages and disadvantages of
both approaches that become important when the conductiv-
ity tensor has low symmetry.13 In the present paper expres-
sion �20� is computed directly.

For electronic structure calculation we use a relativistic
full-potential linear muffin-tin orbital �FP-LMTO� code. The
code is described in detail in Ref. 20. A discussion of the
treatment of spin-orbit coupling by means of the second
variational step can be found in Ref. 21.

V. SYMMETRY CONSIDERATIONS

We have used standard space-time symmetry analysis22

to find the irreducible forms of the dielectric tensors of

hcp Co with magnetization along �112̄0� and of CrO2

with magnetization along �010�. The crystal structures are
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shown in Fig. 1. We find space-time point groups m� m2�
and 2� /m� for Co and CrO2, respectively. Making the coordi-
nate systems explicit, irreducible sets of point group opera-
tions can be chosen as identity, twofold rotation around z
followed by space inversion and twofold rotation around y
followed by time inversion for Co and identity, space inver-
sion, and twofold rotation around x followed by time inver-

sion for CrO2. Standard symbols are 1, 2̄z, 2�y and 1, 1̄, 2�x,
respectively.

Irreducible space-time symmetries of the dielectric ten-
sors follow by Neumann’s principle which states that

� = � � � � �−1 �23�

has to be satisfied for any symmetry operator �. For classical
point-group operators the respective matrix equation can be
evaluated. For nonclassical operators �=s �� composed of a
classical operator s and the time inversion operator �, Eq.
�23� can be brought into matrix form by stressing the equiva-
lence of time inversion and magnetization reversal,

� � ��M� � �−1 = ��− M� , �24�

and Onsager’s relation

��− M� = �T�M� , �25�

where T denotes the transpose.
For the Co crystal we find

� = � �xx �xy 0

− �xy �yy 0

0 0 �zz
� . �26�

For CrO2 we have

� = � �xx �xy �xz

− �xy �yy �yz

− �xz �yz �zz
� . �27�

Next we consider the symmetry properties of the same
crystals but without magnetism. Co has the well-known point
group 6/mmm, and the irreducible form of the dielectric ten-
sor without magnetism is

� = ��xx 0 0

0 �yy 0

0 0 �yy
� . �28�

The CrO2 crystal without magnetism is nonsymmomorphic.
It has space group P42/mmm. Evaluation of Neumann’s
principle is standard for pure point group operators. For sym-
metry operators �̂=� �T, which are a combination of a point-
group operator � and the translation operator T 	the fourfold
screw axis 4x �T�c /2 ,0 ,0� in our case
, Neumann’s principle
can be evaluated by stressing the invariance of the dielectric
tensor under arbitrary translations:

T � � � T−1 = � . �29�

We find the irreducible form of the dielectric tensor without
magnetism is the same as for Co.

Next we consider the expansion of the dielectric tensor in
powers of the magnetization and stress the following sym-
metry properties: The zeroth-order contribution has symme-
try of the nonmagnetic crystal. Magnetic contributions of
odd order have space-time symmetry of the magnetic crystal
and are antisymmetric. Magnetic contributions of even order
have space-time symmetry of the magnetic crystal and are
symmetric. The antisymmetry and symmetry properties, re-
spectively, of odd and even-order magnetic contributions are
arrived at in general by applying Onsager’s relation to the
expansion.

We find that up to second order in the magnetization the
expansion has the symmetry, for Co,

� = ��xx
0 0 0

0 �yy
0 0

0 0 �yy
0 � + � 0 �xy

1 0

− �xy
1 0 0

0 0 0
� + ��xx

2 0 0

0 �yy
2 0

0 0 �zz
2 �
�30�

and, for CrO2,

� = ��xx
0 0 0

0 �yy
0 0

0 0 �yy
0 � + � 0 �xy

1 �xz
1

− �xy
1 0 0

− �xz
1 0 0

� + ��xx
2 0 0

0 �yy
2 �yz

2

0 �yz
2 �zz

2 � .

�31�

Results of standard electronic structure calculations are for
both systems tensors of the form12,23,24 �see also Secs. VI A
and VII A�

� = � �xx �xy 0

− �xy �yy 0

0 0 �yy
� . �32�

This has an important implication. It means that the second-
order magnetic contribution �which would appear as, e.g., a
difference between �yy and �zz� is either absent in both sys-
tems or not resolvable with standard electronic structure cal-
culations. There is no reason why the second-order magnetic
contribution should be absent. So basically the conclusion is
that it is not resolvable with standard electronic structure
calculations. We discuss this in more detail in Sec. VI.

FIG. 1. Crystal structures of �a� �112̄0� ferromagnetic hcp Co
and �b� �010� ferromagnetic CrO2. Coordinate systems are as used
in magneto-optics calculations.
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For the case of CrO2 we conclude that �xz is actually zero
in the first-order magnetic contribution. However, it might
still be present in the third order.

VI. POLAR MOKE OF Š112̄0‹ hcp Co

A. Optical conductivity

We have calculated the optical conductivity tensor of hcp

�112̄0� Co. A hybridized 4s4p3d and 5s5p4d basis was used
in the calculations to describe the Co atoms. Exchange cor-
relation was taken into account in the framework of the local
spin density approximation in the form proposed in Ref. 25.
The lattice constants were a=2.5071 Å and c=4.0695 Å.
Here 38 400 k points were used to sample the Brillouin zone.
Results are shown in Fig. 2. They are in good agreement
with previous theoretical results.23,24 In the output of the cal-
culation we find that tensor elements that should be zero due
to symmetry are of the order of 109 s−1 while we find a
difference between �yy and �zz of the order of 1013 to
1012 s−1. Thus the symmetry of our calculated tensor is in
agreement with Eqs. �26� and �30�. We conclude that the
calculated difference between �yy and �zz is a signature of a
second-order magnetic contribution. However, if we change
the numerical parameters of our calculation �e.g., basis set,
k-point mesh�, the variation of �yy and �zz is typically larger.
So we have to conclude within the error of our calculation
�yy and �zz are equal. The conclusion is that the second-order
magnetic contribution cannot be resolved with standard elec-
tronic structure calculations.

B. Optical response of the single crystal

We have calculated the optical response in polar MOKE
geometry with perpendicular incident light with our transfer
matrix approach. We find that the optical response depends
strongly on the direction of the polarization vector in the
surface plane. If the polarization vector is along one of the
main crystal axes, birefringence is absent and the optical
response is similar to the common polar MOKE. When the
polarization vector is turned away from the main crystal axis
the optical response is a combination of crystallographic bi-
refringence and a magnetic effect. We find that birefringence
starts to be important at about 3°. Results are shown in Fig.
3. Directions of the polarization vector are in one-quarter of
the full circle in the surface plane which is chosen symmetri-
cally around the crystallographic x axis. For directions of the
polarization vector chosen around the crystallographic y axis,
results are identical on the scale of the plot. The latter is a
nontrivial result. Since the crystallographic x and y directions
are different, one would expect independent results in half of
the full circle. It can only be understood by stressing that the
birefringence is large compared to the magnetic effect �see
below and Sec. VI D�. The solid curves show the case when
the polarization vector is parallel to a main crystal axis. The
optical response is similar to the polar MOKE of hcp �0001�
Co.23,24 To a good approximation it can be regarded as a
common polar MOKE response without birefringence. The
dashed and dotted curves show the optical response for cases
when birefringence is important. If the polarization vector

FIG. 2. Calculated optical conductivity tensor of hcp Co with

magnetization direction �112̄0�. Quantities are shown in a range
where only direct interband tranzition are important.

FIG. 3. Calculated optical response of �112̄0� hcp Co in polar
MOKE geometry. The polarization vector is parallel to the crystal-
lographic x axis at zero angle. Curves shifted to higher values just
below 5 eV correspond to positive angles.

POLAR MAGNETO-OPTICAL KERR EFFECT FOR LOW-… PHYSICAL REVIEW B 72, 014451 �2005�

014451-5



has an angle of ±5.5° relative to the main crystal axis, the
birefringent contribution has about the same magnitude as
the magnetic effect. It reaches its maximum at an angle of
±45°. At this angle it is about one order of magnitude larger
than the magnetic effect.

The present system has been investigated experimentally
in detail by Weller et al.1 In this experiment different
samples were used at least one of which was a polycrystal
with two types of crystallographic domains related to each
other by a 90° rotation around the surface normal. Experi-
mental results do not report birefringent contributions or a
dependence on the direction of the polarization vector. So
our theoretical results for the single crystal presented
here are very different from experimental findings.
Still, there is no direct disagreement between theory and
experiment simply because it is possible that the experimen-
tal data that were taken actually correspond to the case
when the polarization vector is along a main crystal axis.
For this case there is good agreement with theory �see
Fig. 5�. However, we believe that this is not what was
happening. Rather we speculate that during measurements
at some point different directions of the polarization vector
were used and still basically the common polar MOKE
was found without substantial dependence on the direction
of the polarization vector. Let us for the moment focus
on the sample which we know is a polycrystal. Then the
conclusion is that the optical response of a polycrystal with
two domain orientations is fundamentally different from
the optical response of a single crystal, so in order
to describe experiment correctly, it is important to
consider the full polycrystal rather than a single-crystalline
sample.

C. Optical response of the bicrystal

We have calculated the optical response of a polycrystal
with two domain orientations. Our approach was to calculate
average Stokes parameters from our transfer matrix calcula-
tion as described in Sec. III. Experimental data about
the distribution of domain sizes and intensities shining on
them were not known, so we had to make an assumption
here. We expect that crystal growth occurs with equal prefer-
rence in both of the two domain orientations, so the
total surface areas should be the same and total intensity of
the incident light should be devided equally among the two
orientations.

Results are shown in Fig. 4. In general, we find now
for any direction of the polarization vector that our
calculated optical response is similar to the common polar
MOKE and theoretical results are now in good agreement
with experimental data. The birefringent contribution,
which for the single crystal was the dominant contribution to
the optical response, is now averaged out. However, the
birefringent contribution is averaged out completely only
in the ellipticity �in our computational result variation
under change of the direction of the polarization vector
is of the order 10−4 deg� while in the rotation it is still
present.

In general the results are quite surprising: For the single
crystal birefringence was about 10 times larger than the mag-

netic effect. For the polycrystal it is averaged out so strongly
that it is now smaller than the magnetic contribution. How is
this possible only due to the presence of one additional do-
main orientation? And, second, why is the birefringent con-
tribution completely missing in the ellipticity but still present
in the rotation? It is important to find out the general mecha-
nism behind this.

We have considered average Stokes parameters for poly-
crystals with ordered domains analytically. We find that the
optical response strongly depends on the in-plane symmetry
of the domain orientations. In the majority of cases, ordered
polycrystals are equivalent to polycrystals with a random
domain distribution and thus the optical response is indepen-
dent of the direction of the polarization vector. In particular
we can prove that the Stokes parameters S0 and S3 are iden-
tical to those of a random polycrystal if and only if the in-
plane symmetry of domain orientations is larger than twofold
and the Stokes parameters S1 and S2 are identical to those of
a random polycrystal if and only if the symmetry of domain
orientations is not 1, 2, or 4. The proof is given in Appendix
A. Analytical findings are in good agreement with the com-

putational result we present here for the hcp �112̄0� polycrys-
tal with two domains. In particular they explain the different
behavior of averaging out in rotation and ellipticity 	only S1
and S2 enter in the rotation, Eq. �16�, while mainly S3 enters
in the ellipticity, Eq. �17�; now note that the polycrystal with
two domains oriented by a 90° rotation has fourfold symme-
try
. The analytical findings have an important consequence
for experiments. They imply that if only a few ordered do-
mains are present inside the illuminated area, the optical re-
sponse will always be very close to the common polar
MOKE.

We now conjecture that the second sample that was

investigated in experiments 	the Ru�112̄0� sample
 was
also a polycrystal �the presence of few ordered domains in
the illuminated area is enough�. For any direction of the
polarization vector that was possibly considered in experi-
ment we immediately have agreement with theory. A
summarizing comparison of the theoretical data with experi-
ment is shown in Fig. 5. Data for �0001� hcp Co are shown
for comparison. The theoretical data for �0001� hcp Co have

been calculated in the same way as the data for �112̄0� hcp.

FIG. 4. Calculated optical response of bicrystalline hcp �112̄0�
Co. At 0° the polarization vector is along a main crystal axis of one
of the domains.
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They are is in good agreement with previous theoretical
data.23,24

D. Anisotropic polar MOKE

The goal of the previous experimental work of Weller and
co-workers was to find a manifestation of magnetocrystalline
anisotropy in the magneto-optical response. They investi-
gated how the optical response changes when the relative
orientation between magnetization and crystal lattice is
changed while the polar measuring geometry and other pa-
rameters of the experiment are kept �lattice parameters, crys-
tal growth quality, etc.�. It was found that the optical re-

sponse of hcp �0001� and hcp �112̄0� is different. These
results were explained by the dependence of the absorptive
part of the refractive index on the angle between crystallo-
graphic c axis and spin moment.

We know now that the electrodynamics part of the prob-
lem is much more complicated. It is important to calculate
the full optical response including crystallographic birefrin-
gence and also the polycrystalline nature of the sample has to
be taken into account. So it is important to check if the main
conclusions given in the experimental work still hold. As we
will see below, the answer is yes.

From a theoretical point of view the situation is the fol-
lowing: We have the common polar MOKE in hcp �0001�
�no birefringence, optical response is independent of direc-
tion of the polarization vector� and a combination of birefrin-
gence and magnetic response with strong averaging out of

birefringence in the hcp �112̄0� polycrystal. So the optical
responses are fundamentally different. Nevertheless, in both
systems the magnetic contribution to the optical response
originates from the tensor element �xy. We would say that we
have measured anisotropy in the magneto-optical constants if
we can conclude from the measurement that �xy has changed
due to a change of the magnetization direction. So what we
want to show now is that the difference in the magneto-
optical response between single-crystalline hcp �0001� and

polycrystalline hcp �112̄0� is basically only determined by
the change in �xy. Admittedly we do not think this can be
proven rigorously. However, what we can do is to calculate

the optical response of the hcp �112̄0� crystal with a dielec-
tric tensor where we substitute �yy by �xx and vice versa. We
can also use the average 1

2 ��xx+�yy� for both. We find in
any case that the optical response is very close to both
the result obtained for the single crystal with the polarization
vector along a main crystal axis and for the polycrystal.
All these cases are much closer to each other than to the
result for hcp �0001�; see also Fig. 5. The conclusion is

that the difference between optical response of hcp �112̄0�
and hcp �0001� is mainly due to the change in �xy. In this
sense it may be regarded as an anisotropic polar MOKE or a
manifestation of magnetocrystalline anisotropy in the optical
response.

VII. POLAR MOKE OF CrO2

A. Optical conductivity

We have calculated the optical conductivity tensor of
�010� CrO2 with the first-principles approach as described in
Sec. IV. The basis set was constructed from 4s4p3d and 4d4f
�respectively, 2s2p and 3s3p� orbitals for the chromium
�respectively, oxygen� sites. The lattice constants and
position parameters were a=4.421 Å, c=2.916 Å, and
x=0.3053 as was used in Refs. 12 and 26–28. Here 32 768 k
points were used to sample the Brillouin zone. Exchange
correlation was treated in the same way as in the calculation
for Co above.

The magnetic moment per CrO2, m=2.0�B, and total en-
ergy per unit cell as well as the density of states agree well
with those given in Refs. 12, 18, and 28. Figure 6 shows our
calculated optical conductivity tensor. Results are in good
agreement with previous theoretical findings.12,18

B. Optical response of the polycrystal

If thin films of CrO2 are deposited on single-crystalline
Al2O3, polycrystalline growth is observed. Crystallites order
sixfold symmetrically with an a axis oriented perpendicular
to the surface.29 Experimental results suggest that the sizes of
crystallites in such films are typically of the order
0.1–10 �m. For the lower limit we are in a regime where
interference effects start to play a role. Consequently the
optical response is no longer a purely incoherent wave and
can in general not be described by average Stokes param-
eters. We exclude this case here. For the upper limit the

FIG. 5. Optical response of hcp �112̄0� Co in polar MOKE
geometry. Theoretical data are for special cases of the direction of
the polarization vector. Experimental data are due to Weller et al.
Results for hcp �0001� are shown for comparison.
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optical response of the polycrystal is well described by av-
erage Stokes parameters.

We have calculated the optical response of polycrystalline
�010� CrO2 with sixfold symmetric domain ordering. We find
that the optical response is independent of the direction of
the polarization vector. Results are shown in Fig. 7. They are
in good agreement with experimental data.

Also, the results are in good agreement with analytical
findings given in Appendix A: the sixfold-symmetric poly-
crystal is a member of the isotropic class which implies that
crystallographic birefringence is averaged out completely
both in the rotation and in the ellipticity.

The results have an important implication. In a previous
theoretical work Uspenski� et al.12 derived an approximative
analytic expression for the polar MOKE of a polycrystalline
surface with two-dimensional random domain distribution. It
reads

� + i� =
2�xy

���xx + ��yy��1 − ��xx
��yy�

. �33�

Here the roots are taken in the upper complex half plane.
From the more recent experimental works29 it is clear that
domain distribution of polycrystalline CrO2 is actually not
random rather it has sixfold symmetry. So Eq. �33� is in
general not applicable. However, from the analytical results
of Appendix A we know now that the optical response of the
sixfold-symmetric polycrystal is equivalent to the optical re-
sponse of a random polycrystal of the same material. Thus,
the validity of the approximative expression is extended to
the whole isotropic class. Hence, indeed the optical response
of CrO2 can be calculated with Eq. �33�.

We have calculated the optical response also with the
approximative expression. Results differ from the rigorous
result obtained with our transfer matrix calculation and
subsequent determination of exact average Stokes param-
eters to the fourth relevant digit. This shows that �for CrO2�
the approximative expression is actually very good. Also
it shows that the computational results are in very good
agreement with the rigorous analytic treatment given in
Appendix A.

VIII. SUMMARY AND CONCLUSION

We have calculated the polar magneto-optical Kerr effect

for hcp �112̄0� Co and for �010� CrO2. Our approach was
based on first-principles calculations of dielectric tensors.
We have addressed the electrodynamics part of the
problem—i.e., the extraction of MOKE from dielectric
tensors—with a transfer matrix method. We could describe
the simultaneous occurrence of the birefringence and
magnetic effects that is present in the systems. For polycrys-
tals the average optical response was described by exact av-
erage Stokes parameters, taking into account the real orien-
tations of domains.

For hcp �112̄0� Co we found that a single-crystal
optical response depends strongly on the direction of the
polarization vector. If the polarization vector is along one
of the main crystal axes, the optical response is very similar
to the common polar MOKE and, moreover, for the
two crystal axes the optical response is basically the same.
If the polarization vector deviates more than about 3°
from one of the main crystal axes, birefringence is important.
For larger angles it dominates over the actual magnetic
effect. To explain the experimental data we had to stress
that the samples investigated in the experiment were poly-
crystals. We could show that already the presence of
two domain orientations leads to a strong reduction of
the birefringent contribution in the magneto-optical response.
Finally we could show that the previous interpretation
of experimental data in terms of a manifestation of magne-
tocrystalline anisotropy in the optical response remains
valid.

For polycrystalline �010� CrO2 we found that the
birefringent contribution to the optical response is
averaged out completely. We could verify that a previous

FIG. 6. Calculated optical conductivity tensor of �010� CrO2.

FIG. 7. Calculated optical response of a-axis-textured sixfold
symmetrically ordered CrO2. The solid line shows the rotation
� of the polarization ellipse. The dashed line shows its ellipticity
�.
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approximative analytic expression describes the optical
response exactly also for the case of realistic domain
orientations.

The results of our local density approximation �LDA� cal-
culations for both hcp Co and CrO2 are in very good agree-
ment with the experimental data �assuming that the data for
Co are for a bicrystal�. This is not trivial since, in general,
correlation effects might be essential for the electronic struc-
ture of transition metal ferromagnets.30 The effect of local
Coulomb interactions on the magneto-optical properties of
Fe and Ni has been calculated in Refs. 31 and 32 in the
framework of a dynamical mean-field theory �LDA+DMFT
approach�. It appeared that, whereas for Ni the correlation
effects are important, for Fe there are almost no difference
between LDA and LDA+DMFT results for optical and
magneto-optical properties. Our results show that probably
correlation effects are not very important also for magneto-
optical properties of Co. As for ferromagnetic CrO2 a recent
analysis33 shows that it should be considered rather as a
weakly correlated system, so the success of our calculations
is not surprising.
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APPENDIX A: CLASSIFICATION OF POLYCRYSTALLINE
SURFACES

Most polycrystalline surfaces occurring in nature have
either a three-dimensional distribution of domain orienta-
tions or a two-dimensional distribution with only few
domain orientations that are related to each other by a rota-
tion round the surface normal. The three-dimensional
distribution is found for surfaces of bulk polycrystals
such as, e.g., natural iron. The ordered two-dimensional
distribution is often found when thin polycrystalline films
are grown on single-crystalline substrates. In the case of the
three-dimensional distribution, the domain orientations are
often to a good approximation random. The average polar
MOKE of a three-dimensional random polycrystal is obvi-
ously independent of the direction of the polarization vector
in the surface plane. We skip this case here as well as other
three-dimensionally ordered polycrystals. Rather we focus
on polycrystals with a two-dimensional distribution of
domain orientations. We call a surface n-fold symmetrically
ordered if the crystallographic structures of all domains
can be mapped onto each other by an n-fold rotation around
the surface normal. We will also use a notion of a two-
dimensional continuously distributed polycrystalline surface.
By that we mean a polycrystalline surface in which the

crystallographic structures of the domains can be mapped
onto each other by suitable continuous rotations around
the surface normal and all possible orientations occur.
This corresponds to two-dimensional random domain
orientations. Also for this case, the average polar MOKE is
obviously independent of the direction of the polarization
vector.

We show now that for most polycrystals with symmetri-
cally ordered domains the average polar MOKE is equivalent
to the average polar MOKE of a continuously distributed
polycrystal of the same material.

In particular we prove the following statement. The aver-
age Stokes parameters �S0� and �S3� are identical to those of
a continuous polycrystal if and only if the in-plane symmetry
of domain orientations is larger than twofold and the Stokes
parameters �S1� and �S2� are identical to those of a continu-
ous polycrystal if and only if the in-plane symmetry of do-
main orientations is not 1, 2, or 4.

We begin the proof by considering the light reflected
from a single domain. If reflection is described by means
of a transfer matrix method, then, for any wave vector
and frequency, the complex amplitude of the reflected
wave is a linear mapping of the complex amplitude of
the incident wave. This can be seen directly from the
main linear equation �14�. Further, in case of normal
incidence, the incident and reflected amplitude vectors
may be represented in a common coordinate system parallel
to the surface plane. Thus, if Ein and Erefl are respective
2-vectors, there is a linear transformation T :C2→C2 such
that

Erefl = TEin. �A1�

Now let some other domain be identical to the previous one
up to a rotation

R��� = � cos � sin �

− sin � cos �
� �A2�

around the surface normal.
If E2

refl is the amplitude of the wave reflected from the
second domain, we have

E2
refl = R���TR−1���Ein. �A3�

Now consider an n-fold symmetrically ordered polycrystal.
Introducing the angles �k=2
k /n, k=1, . . . ,n, the amplitude
vectors Ek

refl of the reflected waves are

Ek
refl = R��k�TR−1��k�Ein. �A4�

By Eq. �15� the average Stokes parameters are

�S� = �
k=1

n

S�R�2

k

n
�TR−1�2


k

n
�Ein� . �A5�

For a continuously distributed polycrystal we have

�S� =
1

2

�

0

2


S	R���TR−1���Ein
d� . �A6�

It is shown in Appendix C that the latter two expressions are
equal in the first and last component if and only if n� �1,2�
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and in the second and third components if and only if
n� �1,2 ,4�. This finishes the proof.

The latter statement is fundamental for the understanding
of the average polar MOKE of polycrystals. It naturally de-
cides thin polycrystalline films into three classes: twofold
symmetrically ordered films, fourfold symmetrically ordered
films, and all others including two-dimensional random ori-
entation. Further, it implies that for polycrystalline films out
of the first two classes the optical response does in general
depend on the direction of the polarization vector. Thus the
birefringent contribution to the optical response is in general
not averaged out. On the other hand, it implies that for poly-
crystals out of the last class the optical response is indepen-
dent of the direction of the polarization vector. Thus the bi-
refringent contribution to the optical response is averaged
out.

APPENDIX B: SYMMETRIC SUMS OVER POWERS OF
TRIGONOMETRIC FUNCTIONS

We prove a statement about symmetric sums over powers
of cos and sin.

Let f :R→R and q�Q. Then the identity

1

2

�

0

2


f�x�dx =
1

n
�
k=1

n

f�2

k

n
� = q

holds for pairs f , q,

cos2,
1

2
,

sin2,
1

2
,

cos sin, 0,

cos4 + cos2 sin2,
1

2

3

4
+

1

8
,

sin4 + cos2 sin2,
1

2

3

4
+

1

8
,

cos3 sin + sin3 cos, 0,

sin4 − cos4, 0, �B1�

if and only if n� �1,2�, and for pairs f , q

cos4,
1

2

3

4
,

sin4,
1

2

3

4
,

cos2 sin2,
1

8
,

cos3 sin, 0,

sin3 cos, 0,

cos4 − cos2 sin2,
1

2

3

4
−

1

8
,

sin4 − cos2 sin2,
1

2

3

4
−

1

8
,

cos3 sin − sin3 cos, 0, �B2�

if and only if n� �1,2 ,4�.
We begin the proof by considering sums of the form

1

n
�
k=1

n

emi2
k/n, m � N , �B3�

where n�N ,n�2.
If m= ln with some l�N, then

1

n
�
k=1

n

emi2
k/n =
1

n
�
k=1

n

eli2
k = 1, �B4�

whereas if n= lm with some l�N, we have

1

n
�
k=1

n

emi2
k/n =
1

n
�
k=1

lm

ei2
k/l =
1

n
m�

k=1

l

ei2
k/l = 0. �B5�

Now let p and q be the largest prime numbers occurring in
the prime factorizations of n and m, respectively. Let
Fp= ��0,1 , . . . , p−1� , · , + � be the prime field of the modulo
classes of p in the common sense. Let m ·F�N be the set
�0,1q \ p ,2q \ p , . . . , �p−1�q \ p�. We divide the set of complex
numbers occurring in Eq. �B3� into s subsets. We chose s
such that n=s · p and consider

Aj = �ei2
�k/p�+mi2
j/n,k � m · Fp�, j = 1, . . . ,s . �B6�

Then

1

n
�
k=1

n

emi2
k/n =
1

n� �
z�A1

+ ¯ + �
z�As

�
=

1

n��emi2
�1/n� + ¯ + emi2
s/n� �
k�m·Fp

ei2
k/p�
= 0 if q  p . �B7�

Using Eqs. �B4�, �B5�, and �B7�, we can calculate the sum
given by Eq. �B3� with some m�N for any n�N. We con-
sider the cases m=2 and m=4.

For m=2 we obviously have a largest prime factor q=2;
i.e., by Eq. �B7� the sum vanishes for

n = 3,6,7,9,10,11,12, . . .

and any other natural number containing a prime greater than
or equal to 3 in its factorization. For n=4,8 ,16, . . ., the sum
vanishes by Eq. �B5�, while for n=1,2 the sum is one by Eq.
�B4�. Thus we have
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1

n
�
k=1

n

e2i2
k/n = 0 if and only if n � �1,2� . �B8�

For m=4, we have a largest prime factor q=2 as well; i.e.,
the sum vanishes again for

n = 3,6,7,9,10,11,12, . . .

and any other natural number containing a prime greater than
or equal to 3 in its factorization. For n=8,16,32, . . ., the sum
vanishes by Eq. �B5�, while for n=1,2 ,4, we obtain by Eq.
�B4� that the sum is one. Thus

1

n
�
k=1

n

e4i2
k/n = 0 if and only if n � �1,2,4� . �B9�

We prove the first line of Eq. �B1�. The identity

1

2

�

0

2


cos2���d� =
1

2
�B10�

follows from the more general formula

�
0


/2

sin2�+1���cos2�+1���d� =
��� + 1���� + 1�
2��� + 1 + � + 1�

,

�B11�

where � is the gamma function.34 Further,

1

n
�
k=1

n

cos2�2

k

n
� =

1

2
+

1

n

1

4�
k=1

n

	e2i2
k/n + e−2i2
k/n


=
1

2
if and only if n � �1,2� ,

�B12�

where we have used Eq. �B8� for the last line.
In a similar way, the second and third lines of Eq. �B1�

follow from Eqs. �B11� and �B8�.
Next we prove the first line of Eq. �B2�. Once again, we

refer to Eq. �B11� to see that

1

2

�

0

2


cos4���d� =
1

2

3

4
. �B13�

On the other hand,

1

n
�
k=1

n

cos4�2

k

n
� =

1

2

3

4
+

1

n

1

16�
k=1

n

	e4i2
k/n + e−4i2
k/n

+ 4e2i2
k/n + 4e−2i2
k/n


=
1

2

3

4
if and only if n � �1,2,4� ,

�B14�

where we have used Eqs. �B8� and �B9� for the last line.
In a similar way, we find

1

n
�
k=1

n

sin4�2

k

n
� =

1

2

3

4
, �B15�

1

n
�
k=1

n

cos2�2

k

n
�sin2�2


k

n
� =

1

8
, �B16�

1

n
�
k=1

n

cos3�2

k

n
�sin�2


k

n
� = 0, �B17�

and

1

n
�
k=1

n

cos�2

k

n
�sin3�2


k

n
� = 0, �B18�

if and only if n� �1,2 ,4�. This gives the first five identities
of Eq. �B2�.

To see that the last four lines of Eq. �B1� hold, we
add the corresponding expressions obtained above and
find that in all cases the sums over fourth powers
cancel, while sums over second powers remain. In contrast
to that, also the fourth-order sums remain in the expressions
for the last three lines of Eq. �B2�. This finishes the
proof.

APPENDIX C: AVERAGE STOKES PARAMETERS FOR
n-FOLD-ROTATED 2Ã2 LINEAR TRANSFORMATIONS

Let E�R2, R��� :R2→R2 be a rotation by an angle �
and T :C2→C2 a linear transformation of most general sym-
metry. Let Sj :C2→R, j=0,1 ,2 ,3 be the Stokes parameters.
Then

1

n
�
k=1

n

Sj�R�2

k

n
�TR�2


k

n
�−1

E�
=

1

2

�

0

2


Sj	R���TR−1���E
d� �C1�

holds for j=0,3 if and only if n� �1,2� and for j=1,2 if and
only if n� �1,2 ,4�.

We treat the four cases separately.
Consider S0.
First we evaluate the expression for the Stokes parameter

occurring in Eq. �C1�. Dropping the angular argument of the
rotation, we get from Eq. �15�

S0�RTR−1E� = 	RTR−1E
x	RTR−1E
x + 	RTR−1E
y	RTR−1E
y

= �RTR−1E,RTR−1E� , �C2�

where �·,·� denotes the standard scalar product in C2. R is
orthogonal, thus

�RTR−1E,RTR−1E� = �TR−1E,TR−1E� , �C3�

which expresses, that in a total intensity measurement, the
reflected light of a polycrystal illuminated with a single in-
cident beam is not distinguishable from the reflected light of
a single crystal illuminated with several beams with respec-
tive orientations of the polarization vectors. We denote
c=cos���, s=sin���, and
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R = � c s

− s c
� . �C4�

Thus

TR−1 = �cTxx + sTxy − sTxx + cTxy

cTyx + sTyy − sTyx + cTyy
� . �C5�

Introducing E= �a ,b�, we have

	TR−1E
x	TR−1E
x = 	�cTxx + sTxy�a + �− sTxx + cTxy�b
	�cTxx + sTxy�a + �− sTxx + cTxy�b


= �c2TxxT̄xx + csTxxT̄xy + csTxyT̄xx + s2TxyT̄xy�a2

+ �− csTxxT̄xx + c2TxxT̄xy − s2TxyT̄xx + csTxyT̄xy�a2 + �− scTxxT̄xx − s2TxxT̄xy + c2TxyT̄xx + csTxyT̄xy�a2

+ �s2TxxT̄xx − scTxxT̄xy − scTxyT̄xx + c2TxyT̄xy�a2. �C6�

Thus by the first three lines of Eq. �B1�

1

2

�

0

2


	TR−1���E
x	TR−1���E
xd� =
1

n
�
k=1

n �TR−1�2

k

n
�E�

x
�TR−1�2


k

n
�E�x �C7�

if and only if n� �1,2�. From Eq. �C5� we see, that the y component of the transformed vector has the same form as the x
component. This completes the proof for S0.

Consider S1 and S2.
In contrast to S0, both S1 and S2 are no scalar products. Thus, we have to evaluate the full expression RTR−1E. With Eqs.

�C4� and �C5� we get

RTR−1 = � c2Txx + csTxy + csTyx + s2Tyy − csTxx + c2Txy − s2Tyx + csTyy

− csTxx − s2Txy + c2Tyx + csTyy s2Txx − csTxy − scTyx + c2Tyy
� . �C8�

We denote E= �a ,b� as before and RTR−1E=E�= �Ex� ,Ey��.
Then

Ex� = �c2Txx + csTxy + csTyx + s2Tyy�a

+ �− csTxx + c2Txy − s2Tyx + csTyy�b ,

Ey� = �− csTxx − s2Txy + c2Tyx + csTyy�a

+ �s2Txx − csTxy − csTyx + c2Tyy�b . �C9�

By Eq. �15�, we have

S1 = Ex�E�x − Ey�E�y �C10�

and

S2 = Ex�E�y + E�xEy�. �C11�

If we evaluate these expressions by substituting Eq. �C9�,
every resulting term contains factors of cos and sin of the
form considered in Eq. �B1� or �B2�. These terms might add
up to combined terms out of the last four lines of Eq. �B1� or

the last three lines of Eq. �B2�. To check, if we have at least
one independent term out of Eq. �B2�, we focus on expres-
sions with a factor TxxT̄xx. We obtain

S1 = TxxT̄xx�c4a2 − c3sab + c2s2b2 − c2s2a

+ cs3ab − s4b2� + ¯

= TxxT̄xx	�c4 − c2s2�a2 − �s2c2 − s4�b2

+ �cs3 − c3s�ab
 + ¯ �C12�

and

S2 = 2TxxT̄xx�c3sa2 + 2c2s2ab − cs3b2� + ¯ . �C13�

Thus, we have independent terms out of Eq. �B2� which
cannot be combined to terms out of Eq. �B1�. This proves the
cases S1 and S2.

Last consider S3.
Using the same notation as before and the results obtained

in Eq. �C9�, we have

Ex�E�y = 	− c3sTxxT̄xx − c2s2TxxT̄xy + c4TxxT̄yx + c3sTxxT̄yy − c2s2TxyT̄xx − cs3TxyT̄xy + c3sTxyT̄yx + c2s2TxyT̄yy − c2s2TyxT̄xx

− cs3TyxT̄xy + c3sTyxT̄yx + c2s2TyxT̄yy − c2s2TyyT̄xx − cs3TyyT̄xy + c3sTyyT̄yx + c2s2TyyT̄yy
a2 + 	c2s2TxxT̄xx − c3sTxxT̄xy

− c3sTxxT̄yx + c4TxxT̄yy + cs3TxyT̄xx − c2s2TxyT̄xy − c2s2TxyT̄yx + c3sTxyT̄yy + cs3TyxT̄xx − c2s2TyxT̄xy − c2s2TyxT̄yx

RATHGEN et al. PHYSICAL REVIEW B 72, 014451 �2005�

014451-12



+ c3sTyxT̄yy + s4TyyT̄xx − cs3TyyT̄xy − cs3TyyT̄yx + c2s2TyyT̄yy + c2s2TxxT̄xx + c3sTxxT̄xy − c3sTxxT̄yx − c2s2TxxT̄yy

− c3sTxyT̄xx − c2s2TxyT̄xy + c4TxyT̄yx + c3sTxyT̄yy + cs3TyxT̄xx + s4TyxT̄xy − c2s2TyxT̄yx − cs3TyxT̄yy − c2s2TyyT̄xx − cs3TyyT̄xy

+ c3sTyyT̄yx + c2s2TyyT̄yy
ab + 	− cs3TxxT̄xx + c2s2TxxT̄xy + c2s2TxxT̄yx − c3sTxxT̄yy + c2s2TxyT̄xx − c3sTxyT̄xy − c3sTxyT̄yx

+ c4TxyT̄yy − s4TyxT̄xx + cs3TyxT̄xy + cs3TyxT̄yx − c2s2TyxT̄yy + cs3TyyT̄xx − c2s2TyyT̄xy − c2s2TyyT̄yx + c3sTyyT̄yy
b2.

With Eq. �15� we obtain

S3 = i�Ex�E�y − E�xEy��

= 	�c4 + c2s2�TxxT̄xx − �c4 + c2s2�TyxT̄xx + �c3s + cs3�TxxT̄yy − �c3s + cs3�TyyT̄xx − �s4 + c2s2�TyyT̄xy + �s4 + c2s2�TxyT̄yy

+ �c3s + cs3�TxyT̄yx − �c3s + cs3�TyxT̄xy
a2 + 	2	�c3s + cs3�TyxT̄xx − �c3s + cs3�TxxT̄yy
 + 2	�c3s + cs3�TxyT̄yy

− �c3s + cs3�TyyT̄xy
 + �c4 + c2s2�TxxT̄yy − �c2s2 + c4�TyyT̄xx + �s4 + c2s2�TyyT̄xx − �c2s2 + s4�TxyT̄yy

+ �c4 − s4�TxyT̄yx + �s4 − c4�TyxT̄xy
ab + 	�c2s2 + s4�TxxT̄yx − �s4 + c2s2�TyxT̄xx + �cs3 + c3s�TyxT̄xy

− �c3s + cs3�TxyT̄yx + �cs3 + c3s�TxxT̄yy − �c3s + cs3�TxxT̄yy + �c4 + c2s2�TxyT̄yy − �c2s2 + c4�TyyT̄yx
b2.

Indeed all terms contain a factor of cos and sin out of those given in Eq. �B1�. This finishes the proof.
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